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We study a generalized aggregation process in which charged particles diffuse 
and coalesce randomly on a lattice. For one-dimensional and mean-field models, 
we show that there exists a statistically-invariant steady state when randomly 
charged particles are continuously injected. The steady-state charge distribution 
obeys a power law with the exponent depending both on the type of the injec- 
tion and on the spatial dimension. The response of the system to a perturbation 
(i.e., relaxation) is characterized by either a power taw decay (t -~, fl ~< 1) or a 
compressed exponential decay [exp( - t~ ~ > 1 ]. 

KEY WORDS:  Aggregation; injection; power law distribution; stability; 
relaxation; stable distribution. 

1. I N T R O D U C T I O N  

Aggregation of diffusive particles shows peculiar statistical behavior due to 
its intrinsic irreversible nature. Recently much work on aggregation has 
involved the notion of fractals. (m) It is now clear that complicated 
geometrical objects, characterized by fractional power laws, can be 
produced by simple aggregation and diffusion rules. ~3) 

In aggregation systems, fractional power laws can be found in the 
spatial as well as the temporal behavior of the mass-distribution function. 
In a closed system, the total number of particles decays as a power law 
with respect to timeJ 3-5) A statistically-invariant steady state can be 
realized by continuous injetion of small particles. In this case the number 
of particles converges to a value determined by the balance of aggregation 
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and injection rates. (3'6~ The mass distribution which characterizes this 
steady state is also known to follow a power law. (7'8) 

In general, power laws appear in the behavior of systems at thermal 
equilibrium near the critical point. However, in aggregation systems 
criticality often arises automatically. There are many phenomena in nature 
which show power law behavior in the absence of a control parameter; (29) 
remarkably, they all occur in irreversible dissipative systems. Since aggrega- 
tion is a typical dissipative phenomenon, we expect that the study of the 
statistical properties of aggregation will contribute to the construction of a 
statistical physics of irreversible systems. 

In this paper, we investigate the statistical properties of aggregation 
with injection. Some power laws are found for one-dimensional and 
mean-field cases, together with results from numerical simulations. In the 
following section the model is described and the basic equations are 
derived. The solution for the case of no injection is given in the third 
section. In the fourth section we study the statistical properties of the 
steady state realized by continuous injection. We show that there exists a 
stable steady state which obeys a robust power law distribution. Finally, in 
the fifth section we examine the response of the steady-state power law to 
an initial perturbation. We show that the power law is stable and that any 
perturbation quickly relaxes to the steady state, following either a power 
law decay or a compressed exponential decay, depending on the type of 
injection and the dimensionality of the space. 

2. THE M O D E L  A N D  THE BASIC EQUATIONS 

We consider the aggregation process in discretized space and time 
(one dimension and mean field). On every site there is at most one particle. 
If more than two particles happen to hop onto one site, they immediately 
coalesce into a single particle with the charge of the aggregate equal to the 
sum of the charges of the two incident particles. Let m(j, t) be the charge 
of the particle on site j at the tth time step. The aggregation process can 
be represented by the following stochastic equation for m(j, t): 

m(j, t +  1)=~ Wjk(t) m(k, t) + l(j, t) (1) 
k 

where I(j, t) denotes the charge injected at the j t h  site at time t, and Wjk(t ) 
is a random variable which is equal to 1 when the particle on the kth site 
jumps on the j t h  site and is equal to zero otherwise. Since one particle 
cannot go to two different sites in a single time step, Wjk(t) must be 
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normolized: ~ j  Wjk(t)= 1. In the following analysis we shall consider two 
simple cases: 

(A) W j j ( t ) = l  with probability 1/2, Wjy_l(t)= 1 with probability 
1/2, and Wi~(t ) = 0 for k # j, j - 1. 

(B) Wj~(t) = 1 with probability 1/N, where N is the total number of 
sites, which will tend to infinity in our analysis. 

Case (A) with periodic boundary conditions corresponds to the situation of 
aggregating Brownian particles in one dimension, if we observe the system 
from a coordinate which moves with a constant mean velocity of 1/2. Case 
(B) corresponds to the mean-field limit. For injection, we consider two 
cases: (I) independent random injection, and (II) pair-creation injection. In 
the random-injection case, we inject random charges independently at 
every site at every time step. In the pair-creation case, we inject pairs of 
positive and negative charges simultaneously, but randomly, on pairs of 
adjacent sites [For  example, a pair injection onto the j t h  and ( j +  1)th 
sites is given by I(j, t ) = - I ( j +  1, t).] This special case is particularly 
interesting because, as we shall explain in Section 6, it sheds light on the 
problem of the critical dimension of our model. The injection for each time 
step is completed when all sites have, on average, one injected particle. 

In the one-dimensional case (A), the space-time trajectories of particles 
plotted in oblique coordinates give the riverlike pattern shown in Fig. 1. 
Actually this pattern is identical to Scheidegger's river model on a slope. (1~ 
The charge of a particle at (j, t) is equal to the sum of the charges injected 

/ \ \ 

, - j 

Fig. 1. An example of a space-time configuration of sticky random walkers in one-dimension 
with injection. 
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over the branches of the river corresponding to the drainage basin of the 
point (j, t). 

The time evolution of the charge distribution can be analyzed by 
introducing the r-body characteristic function, 

j = l  

where ( - - . )  denotes the average over all realizations of {Wjk(t)} and 
{I(j, t)}. In case (A), with independent random injection, we have the 
following evolution equation, (8) for Zr(p, t) from Eq. (1), 

j ~ l  

(exp[ip Z~= 

4 

Wjkm(k,n)+ip ~, I(j,t)} I 
k j ~ l  

j=O 

Using translational invariance, we have 

Zr(p, t+ I) = �88 r [Zr+ l(p, t)+2Zr(p, t)+Zr_l(p, t)] (4) 

where q~(p)-=(exp[ipl(Lt)]) is the characteristic function for the 
injection process, which can be expanded as 

q~(p) = l + i( I)  p-- ~I 2) p2/2 + ... (5) 

Equation (4) gives a set of linear equations for r =  1,2 ..... N - 1 .  By 
definition, 

Zo(p, t )=  1 (6) 

and for r--N, ZN(p, t) is the characteristic function for the total charge of 
the system, i.e., 

ZN(p, t) = O(O) 'u. ZN(p, 0) (7) 

In the case of pair-creation injection, positive and negative injections cancel 
for j = 2  to r - 1  in Eq. (3). We have the following set of evolution 
equations 

Zl(p, t+ 1)= �88 t)+ 2Z,(p, t)+ 1} (8a) 
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and for r = 2, 3,..., N -  1 

Zr(p, t+ 1) = ls 2 {Zr+l(p, t)+ 2Zr(p, t) 4-Zr_l(p,/)} 

The evolution equation for the mean-field case (B) can be written as 

where 

(Sb) 

N 

Zl(p, t q -1 )= ~( ,0 )  E arZ'(P' t)r (9) 
r = 0  

a~-k  r / \ N J  \ 

This equation is also valid for pair-creation injection because all sites can 
be regarded as nearest neighbors in this case. In the limit N o  oo the 
right-hand side of Eq. (9) averages to an exponential function, namely 

Zt(p, t+ 1)=  r exp[Z~(p, t ) -  1] (10) 

This is the basic equation for the mean-field case (B). 

3. T H E  S O L U T I O N  F O R  N O  I N J E C T I O N  

In order to see the effect of random aggregation, we first consider the 
classical case without injection. First, we solve the one-dimensional case. 
The evolution equation for Zr(p, t) is given by Eq. (4) with q~(p)= 
( e x p [ i p 0 ] )  = 1, 

Z,(p,t+l)=�88 (11) 

This equation can be considered a diffusion equation in (r, t) space. Due to 
the lmearity of Eq. (11), the solution is given as 

t + r  

Z,(p, t ) =  ~ G,.,,(t)-Zr,(p, 01 (12) 
r ' =  - - t + r  

where Gr, r,(t ) is the Green function for Eq. (11), 

l r-r') (13) Gr, r,(t)---~(t__ 2t 

and Zr(p, t) for negative r is defined as 

Z,(p, t)= 2 -  Z_r(p, t) (14) 



730 Takayasu et  al. 

which ensures the boundary condition (6). Gr, r,(t) gives the probability that 
a random walker starting at (r', 0) reaches (r, t). For large t, Eq. (13) can 
be approximated by a Gaussian function: 

G r ,',~t~, .= - -  ] e -(r-r')2/t , t ~  (15) 

where the symbol ~ means equivalence up to first order. Substituting 
Eq. (15) into Eq. (12), and taking the continuum limit for r, we get 

Zr(p, t)~ f~  dr' 1-~e-(r-r')2/tZr,(D, O) 

;o ' 
+ d r ' ~ t e  (r+r')2/t[2--Zr,(p,O)] 

2 ~)  2r'e_(~,)2/,[1 --- 1 - - r ~  dr' -Zr , (p ,  0)] (16) 
t 

where we have expanded the exponential function to first order in r/~ft. 
Let us solve for the decay of particle number with the initial condition 

that every site is occupied by a particle having unit charge. The initial 
condition is given by Z r ( p ,  O)  ~- e ipr. The evolution of the charge distribution 
is obtained by Fourier inversion of Eq. (16), 

pr(m, t)-~ ~ f dp e-i~ t) 

( 2 ~ t )  x/~t2--r-r 2__ram m2/t (17) =- 1 -  8(m) + _ _  

Here pr(m, t) denotes the probability that the sum of the charges at r 
successive sites is m, at time step t. From Eq. (17) we know that the 
charge distribution for large m decays following a Gaussian function and 
the particle number decreases for large t as 

2N 
N. pl(m 4: O, t) 7 -  t ~ oo (18) 

where the symbol ~ means proportional up to first order. This result is 
consistent with those of previous authors (5) who treated the same problem 
by different methods. 

Next, we consider the mean-field case (B). For large t we can assume 
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that Z~(p, t ) =  1 because the existence probability for particles should 
vanish as t--+ oo. From Eq. (10), with ~ ( p ) =  1 we have the following 
evolution equation: 

Z~(p, t+ 1 ) - Z , ( p ,  t )= �89 t ) -  112+ -.. (19) 

By taking the continuum limit with respect to t, we obtain Zt(p, t), 

2El - Z,(p, 0)] 
Z,(p, t) ~ 1 - (20) 

t [ 1 - Z l ( p ,  0)] + 2  

The decay in particle number can be calculated in the same way and we get 

2 
pl(m r O, t ) ~ - ,  t ~ oo (21) 

t 

for the same initial conditions as in the one-dimensional case. Notice that 
in the one-dimensional case, Eq. (18), the decay is slower than in the 
mean-field case, Eq. (21), due to the effect of spatial restriction. 

4. THE STEADY STATE IN THE CASE OF INJECTION 

In this section we study the steady state realized by continuous and 
statistically homogeneous injection. We divide this section into three 
subsections. We first obtain the steady-state charge distribution and then 
show its uniqueness and stability. Finally, the spatial correlation is analyzed 
for the one-dimensional case. The system size N is assumed to be infinite 
throughout. 

4.11. THE C H A R G E  D ISTRIBUT ION 

The charge distribution in the one-dimensional case with random 
independent injection can be obtained from the steady-state solution of 
Eq. (4). We have the following set of linear equations for Z,(p), 
r = 1, 2, 3,..., with the boundary condition (6): 

Z,.+l(p)+ [2--4qT)(p) - r ]  Z r ( p ) +  Z , ](p)=O (22) 

Dividing both sides of Eq. (22) by Zr(p), we get a recurrence relation for 

Z,(p)/Z,_ I(P), 

Z,(p) 1 
(22') 

Zr_I(p) 4 ~ ( p ) - r -  Z-Zr+~(p)/Z,(p) 
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Therefore, ZI(p)  is given by the following continued fraction: 

1 
ZI(p)  = 1 (23) 

4qS(p) - 1 - 2  
4~(p) 2_ 2 -  

4 ~ ( p ) - 3 - 2  . . . .  

Substituting the series expansion for q~(p), Eq. (5), into the terms of Eq. 
(23) and truncating those terms to linear order leads to a new continued 
fraction that can be compared with the continued fraction for the ratio of 
Bessel functions, (m 

Jk(x) 
Jk_~(x) 2k 1 

x 2(k+ 1) 1 

x 2(k + 2) 

X 

(24) 

We then expect that, for I Pl ~ 1, 

Jx+l(x) 
Zl(p)  ~- - -  (25) 

Jx(x) 

where x = l / [ - 2 i ( I ) p + ( I Z ) p 2 ] .  It can be shown (12) that, to leading 
order, the asymptotic behavior of Eq. (23) is identical to that of Eq. (25). 
From the properties of Bessel functions as x--* 0% ZI(p)  in the vicinity of 
p = 0 is finally given by (12) 

~ l - - c ( I )  1/3 i -1/3 [,011/3+ " ' '  for ( I ) r  (26a) 
Z I ( P )  = ~ 1  - -  c(I2) 1/3 2 -1/3 [pl 2/3 + . ( I )  = 0  (26b) 

where c=2rc(16/3)1/6/F(1/3) 2= 1.15723 .... [The same leading order for 
ZI(p)  can be obtained in the continuum limit of Eq, (22). O2'16)] 

Since the characteristic function is the Fourier transform of the 
probability density p(m), we obtain the charge distribution by inversion. 
In the case where ( I )  > 0 (or ( I )  < 0), we have 

p ( m ) ~ m  -4/3 for m ~  ( I )  (or rn~  ( I ) )  (27a) 

while in the case of ( I ) =  0, we have 

p ( r n ) ~ m  -5/3 for Im] >~ ( i 2 ) 1 / 2  (27b) 
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Condition (27a) shows a one-sided power law whose exponent agrees with 
that of the steady distribution for constant injection. (8) Condition (27b) 
gives a symmetric power law. 

Next we consider the pair-creation injection case. From (Sa) and (8b) 
it is easy to show that Z~(p) is given by the following continued fraction: 

l 
Z,(p) = 1 ( 2 8 )  

4 ~ ( p )  - ~ - 2 
1 

40(p)  -2 -- 2-- 

Equation (28) can be transformed to 

z ~ ( p )  - 

4 @ ( p ) - ' - 2  
E 1 4 ~ (p ) -2  _ _  2 + Z~(p) 

4qS(p)-2-- 2 . . . .  

- - -  4q~(p) -~ + 2 ]  

(29) 

which is a quadratic equation for Z~(p). Solving Eq. (29), we get 

Z,(p)= 1 - 2 ( I 2 )  1/2 JPl + " (30)  

The corresponding charge distribution becomes 

pl(m) "~m -2 for [rn] >~ ( I 2 ) 1 / 2  (31) 

This probability density is symmetric and the exponent is the same as for 
a Lorentzian. 

In Figs. 2-4, we show the results of numerical simulations for the cases 
( I )  > 0, ( I )  = 0, and pair-creation injection. 

1 6 z  r I 
m 

:. . 

O- 3 1 

0 ~ 1 0 3 charge  

Fig. 2. The steady-state cumulative charge distribution in one dimension in the case of 
( I )  ~0. The straight line shows the theoretical slope -1/3.  (The slope of the cumulative 
distribution is the slope of the original distribution increased by + 1.) 
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^J 

1 0 ~ ~ -  ....... I ........ I 

l i )  2 

10  
", ,,,,,,I 

1 0 2 c h a r g e  

Fig. 3. The steady-state cumulative charge distribution in one dimension in the case of 
( I )  = 0. The straight line shows the theoretical slope -2 /3 .  

For the mean-field case, the time-independent solution of Eq. (10) 
satisfies 

Z l ( p )  = 03(p) e Z l ( p ) - I  (32)  

In the vicinity of p = 0  we can expand ZI (p )  around 1. Neglecting the 
higher-order terms of p, we get the solutions 

Zl (p)=~ '1- , , / -2  ( I ) ' / 2 i -~ /21p1 ' /2+ . . .  for ( I ) r  (33a) 
( / 2 ) 1 / 2  [Pl-1- " ' "  fo r  ( I )  = 0  ( 3 3 b )  

The corresponding steady-state charge distribution in the case of ( I ) >  0 
(or ( I )  < O) becomes 

Fig. 4. 

e~ 

AI 

p l ( m ) ~ m  -3/2 for 

i i i  
1 0 ~ 1 0 2 

rn>L(l>l 

. . . . . . . .  I . . . .  
c h a r g e  

(34a) 

The steady-state charge distribution in one dimension in the case of pair-creation 
injection, The straight line shows the theoretical slope - 1 .  
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Table I. The Steady-State Charge Distribution p(m) and the Form of the 
Relaxation g(t) for the One-Dimensional Case (1D) and the 

Mean Field case ( M F )  a 

p(m) g(m, t) 

ID, ( 1 )  ~ 0  rn 4/3 e x p [ _ t  3] 
1D, ( I ) = 0  m -5/3 t 3/4 
ID, pair creation m -2 t - I  
M F , ( I ) ~ 0  m 3/2 e x p [ _ t  2] 
MF, ( I )  = 0 m-2  t * 
MF, pair creation 

a In the case of ( I )  ~ 0, p(m) is one-sided, while in the other cases p(m) is symmetric. 

and in the case of ( I ) =  0, 

p l ( r n ) ~ m  -e for m >> (i~)1/2 (34b) 

Again we have a one-sided power law in the case of ( I ) r  0, and a sym- 
me, tric one in the case of ( 1 ) =  0. The results are summarized in Table I. 

The results for the one-dimensional case can be understood intuitively 
as follows. As mentioned in Section 2, the charge of any particle is equal to 
the sum of the charges of the injected particles over its corresponding river 
basin. It is obvious from the evolution rule that the basin's left and right 
boundaries are simple random walks (see Fig. 5). 

Therefore the area of the basin is roughly given by the product S = hw, 
where h and w denote the basin's height and width, respectively. Since the 
boundaries of the basin are random walks, w is proportional to h 1/2 and the 

Fig. 5. 

�9 1 
I I 

w 

An example of the space-time trajectory of a particle. The width and height are given 
by l and h, respectively. 
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distribution of the height h is identical to the distribution of a Brownian 
particle's recurrence time, (13~ 

p ( h ) ~ h  -3/2 (35) 

Hence, the distribution function for the area of the basin, S = h �9 w oc h 3/2, 
is given by 

dh 8_4/3 (36) p(S) = p(h) - ~  

By definition the charge of a particle having basin size S is given by the 
sum of S independent random variables Ij. In the case ( I )  r 0 the charge 
m is" obviously proportional to S, hence we have p ( m ) ~  m -el3. When the 
average value of I is zero, m becomes proportional to the variance 
( ( I 2 ) 8 )  1/2. Substituting the relation m ~ S  1/2 into Eq.(36), we get 
p(m ) ~ m-5/3. 

A pair creation inside the area does not contribute to the charge m, 
because positive and negative charges cancel. The contribution to m comes 
only from the boundaries, namely, m is given by the sum of 2h random 
variables Ij. In the case of pair-creation injection, the mean value of Ij is 
automatically zero, so m is proportional to (2h) m. Substituting this 
relation into Eq. (35), we obtain the charge distribution p ( m ) ~  m -2. These 
intuitive results agree perfectly with the analytic results of Eqs. (27a), (27b), 
and (31). 

4.2. Uniqueness and Stability 

In the preceding section we have seen that there exists a statistically- 
invariant steady state which is realized by injection. Here we show that the 
steady-state is uniquely determined for a given injection, independently of 
the initial conditions. 

Let us introduce a perturbation Zr(P, t) around the steady s t a t e  Zr(p): 

Zr(p, t) = Zr(p) + Zr(p, t) (37) 

Due to the linearity of Eq. (4), the equation for the perturbation Zr(P, t) in 
the one-dimensional case is given by 

2 r ( p , t + l ) = � 8 8  (38) 

with the boundary conditions Zo(p, t )=  0 and 27r(0, t )=  0. 
Taking the absolute value of both sides of Eq. (38) and replacing the 

right-hand side by the maximum of {IZr'(p, t)[, r ' = r - - 1 ,  r, r + l } ,  we 
obtain the following relation: 

12,(p,t)l<lq~r(p)] . m a x { 1 2 , , ( p , t - 1 ) l , r ' = r - l , r , r + l }  (39) 
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Iterating Eq. (39) t times and using the inequality ]q~(P)l ~< 1, which is valid 
for any characteristic function, we get for r v a 0 

IZr(p, t)f ~< I,i~r(p)l t- max{ 12,,(p, 0)l, r ' =  1, 2,... } (40) 

Therefore for any p which satisfies {4~(p)] < 1, the perturbation goes to zero 
exponentially with time. This is true for any initial condition and it means 
that the steady state is unique and stable. The stability for the case 
I~b(p)] = 1 is not trivial, but as we show in the Appendix, even in this case 
the system relaxes to a unique steady state for any initial perturbation. 

In the mean-field case (B), the equation for the perturbation is derived 
by substracting Eq. (32) from Eq. (10), namely 

2~(p, t + l) = ~/'(P) [e z'{(p)+ 2 ' (p ' t ) -  e z~{(p)] (41) 
e 

Taking the absolute value on both sides of Eq. (39) and using the general 
inequality 

[eX-eY[<~e[x-yl  for tx[, [y[ ~< 1 

we find that 

12,(p, t)l < I~(p)l t- rZ,(p, 0)l (42) 

Again for [~b(p)] < 1 it is trivial that the perturbation vanishes as t--* 0% so 
the steady-state solution ZI(p) is unique and stable. The discussion in the 
Appendix is also applicable to this case; therefore the uniqueness and 
stability hold for any size of injection. 

4.3. Spatial Correlation 

We have seen that the exponents of the steady-state distributions are 
different in the one-dimensional and in the mean-field cases (except for the 
case of pair-creation injection). This means that the spatial restriction in 
the one-dimensional case is strong enough to modify the exponent from the 
mean-field value. In this subsection we observe spatial correlations in the 
one-dimensional model and clarify the nature of spatial fluctuations. 

Usually spatial correlation is observed by introducing a correlation 
function such as (m(0, t ) -m(L t)).  However, in our model such a function 
does not have significant meaning because it diverges in the steady state. 
Instead of using the correlation function, we can use the many-body 
characteristic function Zr(p) to see the nature of the singular fluctuation. 
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From the basic steady-state equation (22), we can show that Zr(p) can 
be expanded in the vicinity of p = 0 as 

Zr (p)=  1 - c ~ r  Ipl~+ ... (43) 

where c~ is a constant and fl is either 1/3 or 1/2, depending on the injection 
type. If the distribution was spatially independent, Zr(p) should be equal to 
[Zl(p)]r ;  however, it is easy to prove that these two expressions are identi- 
cal only up to order p~, and there is a nonvanishing term of order p2~ as 

Z~(p)'-Zr(p) r ( r -  1) 
= 2 ( C l ) 2 p 2 f l q  - " ' "  5 0  (44) 

Therefore we can conclude that there really exists spatial correlation. 
However, it is not easy to detect this correlation numerically, because it is 
higher order in p. Actually, both multifractal and R/S analysis, which are 
applicable to this model, are unable to numerically detect correlations. (14) 
It is an open problem to develop a numerical method which could confirm 
the existence of this delicate spatial correlation. 

5. RELAXATION 

In Section 4.2 we have seen that the steady state realized by injection 
is unique and stable. In this section we shall analyze the relaxation to the 
steady stateJ TM 

In the continuum space and time limit and (for small p), the evolution 
equation for the perturbation in the case of independent random injection 
in one-dimension [Eq. (38)] takes the form of the following partial 
differential equation: 

a2r(p, t) a~2~(p, t) 
D Rr2r( p, t), p ~ 0 (45) 

Ot Or 2 

Here D = 1~(4At), and R = ( - i ( I ) p  + (12)pZ/2)/3t, where At denotes the 
time step. By taking the Fourier transform with respect to t [and using the 
boundary conditions Zo(P, t )=  0 and 2~(p,  t ) =  0], one can solve Eq. (45) 
in terms of Airy functions Ai(x) as (16) 

Z,(p, t)= ~ e-~'ktEk(r) (46) 
k - - 1  

where 

2k = lakl (2DR2) 1/3 
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and 

Ek(r ) = Ai((R/2D) I/3 r + at) 

and a~ denotes the kth zero of the Airy function, a1=-2 .33  .... 
a2= -4.08 .... etc. Since 21 is the smallest of {2k}, we have the following 
time dependence when t ~ oo in the case of ( I )  # 0: 

ZI(P, t )=  f l ( p ) e x p { - b l ( I )  2/3 [exp(-~ri/3)] p2/31} (47) 

where bl = talj 2-2/3/At, and f j (p)  is a function independent of t. In this 
type of process the relaxation is faster for larger values of p and slower for 
smaller values of p. The relaxation form of the corresponding mass 
distribution function can be obtained by taking the inverse Fourier trans- 
form of Eq. (47). Analytical expression of the inverse Fourier transform 
can be obtained by applying the theory of stable distributions. [Note 
that the time-dependent factor on the right-hand side of Eq. (47) has the 
same form as the characteristic function of the stable distribution, 
p(x, 2/3, -2/3).  (2'~3'17~] The time evolution of the perturbation is described 
by the following form: 

~(m, t) = f din' ~(m - m', O) g(m', t) (48) 

Here the Green function g(m, t) is given by 

g(m,l) lo_16/(27xZ)l/v ( 3 2 )  
~ c  ' '  1/2,1/6 2--~X 2 (49) 

where x = b l  t ( I ) /ml2/3t  and Wu,~(z) is the Whittaker function. The 
asymptotic behavior of Eq. (49) is estimated as 

g(m, t) ~ exp ( 
bl I (1)t 2 

m2 t3) (50) 

This decay is faster than Gaussian and its characteristic time is propor- 
tional to m 2/3 I ( / ) ]  2/3. 

In the case of ( I )  =0, Eq. (47) for p-+0 is replaced by 

Zl(p, t)----- f2(P) exp{ - b 2 ( I 2 )  2/3 p4/3t}, t--+ oO (51) 

where b2 = [alJ 2-4/3/At, and f2 is independent of t. The Fourier inversion 
of Eq. (51) has the form of Eq. (48) where the Green function is given by 
a symmetric stable distribution with the characteristic exponent 4/3. For 
large [rnl the asymptotic behavior is estimated as 

g(m, t ) ~  (12)  -1/2 1-3/4 for t>~m4/3(12) -2/3 (52) 
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This power-law decay is slow enough to be confirmed numerically, as 
shown in Fig. 6. The points scatter at large t, but they are in good agree- 
ment with the theoretical slope. 

The reason for these two different types of decay, Eq. (50) and 
Eq. (52), will be discussed at the end of this section. 

In the case of pair-creation injection, the perturbation equation in the 
continuum limit is derived from Eq. (8b) in the vicinity of p --+ 0: 

0Zr(p, t) 1 022r(p, t) 
•t 4At ~r 2 b3p22~(p, t) (53) 

where b 3 = (I2)/At .  The solution of Eq. (53) is given by 

Zr(p, t ) -  exp(-b3p2t) oo 
~o dr' Zr'(p, O) (~t/At) 1/2 

x {exp[  ( r - r ' ) 2 ]  ( r+r ' )2]~  ]-exp [ 154/ 
The Fourier inversion of Eq. (54) can be put into the form of Eq. (48), and 
the corresponding Green function has long-time behavior 

g ( m , t ) ~ ( I 2 ) - ~ / 2 t  -1 for t > m 2 ( I 2 )  -x (55) 

We again have a power-law decay in this case, but with a different 
exponent than in the case of random zero-mean injection. 

In the mean-field case, the equation for small perturbations is given by 
the linearized version of Eq. (41): 

ZI( p, t +  1)= q~(p) eZ'{P)-121(p, t) (56) 

Substituting the steady-state solutions, Eqs. (33a) and (33b), we have the 
following solutions for small p: 

Fig. 6. 

10 -4 ........ I , ,~ ~!~' 

I0 ~ 10 2 t 

The relaxation function in the case of (I) = 0 plotted on a log-log scale. The straight 
line shows the theoretical slope, -3/4. 
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In the case of ( I ) r  0, 

Zl(p,t)~-21(p,O)exp[-,~ (I)~/2i-1/21pll/2t], p~O (57a) 

In the case of ( I ) =  0, 

21(p, t )~  21(p, t)exp[-(I2) ~/2 Iplt], p~O (57b) 

Corresponding temporal behavior of the distribution functions is also given 
in the form of Eq. (48). The asymptotic behavior of the corresponding 
Green functions in the continuum limit is obtained as follows. 

In the case of ( I )  r 0, 

g(m,t) e x p [  I(1)]t2] ~ t ~ oo (58a) 
2m ' 

In the case of ( I ) =  0, 

g(m,t)~(I 2) 1/2t-l, t>>m(I2) -1/2 (58b) 

We again have a fast decay (Gaussian decay) in the case of biased injection 
and a slow decay in the case of zero-mean injection. The results are 
summarized in Table I together with the corresponding steady-state 
distributions. 

The reason for the rapid decay in the biased injection cases ( ( I ) r  
can be understood intuitively as follows. Assume that we have perturbed 
the steady-state distribution by introducing a sharp peak in the charge 
distribution around m o. The number of particles of charge m 0 decreases by 
aggregation or by injection. An aggregation event of two particles with 
charges mo and m creates a particle of charge m + too. Consequently, the 
aggregation process scatters the distribution around mo continuously. On 
the other hand, injection shifts the charge of the particle from mo to m0 + L 
In the case of positive-mean injection, for example, the injection causes the 
peak of the charge distribution to drift continuously toward larger m, and 
aggregation also scatters mo to larger values. Thus the relaxation observed 
at a fixed charge m0 is very fastl On the other hand, in the case of ( I )  = 0 
(including pair-creation !njection), the perturbation diffuses slowly around 
mo due to the injection and scatters nearly symmetrically by aggregation. 
The peak of the perturbation does not move on average, and so the decay 
is much slower than in the biased-injection case. 

6. D I S C U S S I O N  

In this paper we analyzed the statistical properties of an aggregation 
system, for one-dimensional and mean-field cases, using the equation for 

822/65/3-4-2l 
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the many-body characteristic function. In the case of no injection, the par- 
ticle number decays following a power law. But there appears a nontrivial 
statistically-invariant steady state if we supply particles at a constant rate. 
The most interesting point here is that the system converges to the steady 
state even in the absence of a sink or particle breakup. It is easy to confirm 
from Eqs. (4) and (10) that the variance of particle charge increases linearly 
with time, namely, it diverges in the limit of t ~ oe. Usually such 
divergence means that the system does not have a stable state, but in this 
case the charge distribution surely converges to a power-law distribution 
which has infinite mean value and variance. 

According to the theory of stable distributions, (13) the divergence of 
the variance is essential to power law distributions. The central limit 
theorem, though, can be generalized to include independent random 
variables with divergent variances. The limiting distribution of the sum of 
such variables is, if it exists, a non-Gaussian stable distribution with a long 
power-law tail. In our model, the variance is divergent in the steady state 
and we can decompose the particle charge into a sum of aggregate 
variables. We cannot directly apply the generalized central-limit theorem 
because we know that there exists a weak spatial correlation among the 
random variables. However, it seems likely that the charge distribution 
here belongs to the domain of attraction of a non-Gaussian stable distribu- 
tion and thus has a power-law tail. 

Our aggregation model does not have any control parameter and 
automatically assumes a power-law distribution, typically a sign of critical 
behavior. In order to see the criticality from the point of view of a 
branching model, one just needs to invert the time axis. (2) In the branching 
model the system can be described by the values of the branching proba- 
bility. For high branching probability the number of particles increases 
exponentially and for low branching probability it decreases exponentially. 
There exists a critical value of the branching probability at which the 
particle number becomes constant constant on average. This model is 
equivalent to one of the stochastic cellular automata analyzed by Domany 
and Kinzel, (18) and it is known that these phase transitions are similar to 
that of directed percolation. In our aggregation model, the number of 
particles is kept constant by injection; therefore, the corresponding 
branching probability must be equal to the critical value to keep the 
particle number constant. 

In Sections 2, 4, and 5 we addressed the question of critical dimension. 
It is an open problem to analyze our model in dimensions greater than one. 
Above the critical dimension, the mean-field model gives the correct 
exponents for both the steady state and for the relaxation. It should be 
noted that in the case of pair creation, the exponents for one dimension 
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coincide with those for the mean field. This result seems to suggest that the 
critical dimension is one in the case of pair-creation injection. On the other 
hand, for random injection (both for ( I ) r  and for ( I ) = 0 ) ,  the 
exponents for one dimension are different than the mean-field values, which 
indicates that the critical dimension is greater than one. It is therefore likely 
that the critical dimension is not universal, but depends on the type of 
injection. 

As we showed in Section 4, the steady-state power-law distribution is 
very robust. It is uniquely determined by the type of injection and is 
independent of the specific details of the injection or initial conditions. The 
fimctional form of the relaxation to the steady state is also determined by 
tlhe type of injection. We have considered only injection distributions with 
finite variance. It is an open problem to analyze the case of injection 
distributions with divergent variance. 

APPENDIX  

The characteristic function ~(p)  by definition satisfies one of the 
following three criteria(19): 

(i) IqS(p)l<l f o r a l l p ,  except for p = 0. 

(ii) IqS(p)l = 1 for all p. 

(iii) I~(P)[ = 1 for countably many p. 

The second case (ii) corresponds to a completely degenerate distribution, 
i.e., the distribution function is represented by a b-function, 

p( I )  = 6 ( I -  Io) (A1) 

The third case corresponds to distributions degenerate at periodic points, 
i.e., 

p(1)=  ~ ajb(I-jIo-I~) (A2) 
j - -  - -oo  

where Io and I~ are constants and {aj} satisfies the normalization condition 
Z j  aj = 1 and aj/-> 0. All other distributions belong to the first case (i). 

From Eq. (40) [or Eq. (42)], we have the following inequality for the 
perturbation: 

12"(p, t)l ~< I~(p)[ ' .  const (A3) 

In case (i), it is trivial that 12(p, t)]--,0 for all values of p as t--, oo 
[remember that for p = 0, 2(p,  t ) =  0 from the boundary condition]. In 
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case (iii), obviously [Z(p, t)l --* 0 as t-- ,  oo for all p except for the points  
{2~j / Io ,  j =  0, + 1, _+2,..}. Since a characterist ic function is a cont inuous  
function, ]2(p,  t)[ must  vanish for all p in the limit t-- ,  oo. 

In  case (ii), we can assume that  Io > 0 wi thout  loss of generality. The  
uniqueness and stability can be p roven  easily if we modify  the definition of 
the characterist ic function as 

Z ( p ,  t ) =  < e - P " > ,  q ) ( p ) = e  -~176 (A4) 

In the same way as we derived Eqs. (38) and (40), we get the following 
inequality: 

[Z(p, 01 ~< e-Pt~ const  (A5) 

and this shows that  12(p, t ) l - -*0 as t--* oo for all values o fp .  
Thus  the per tu rba t ion  IZ(p, t)l vanishes in the limit t --* oo in all cases. 

In other  words,  the aggregat ion system converges to the steady state for 
any initial dis turbance on the power- law distribution. 
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